
Data sheet on bio-based products and the ¹⁴C-method

Sustainability

Ecological sustainability aims to preserve the environment and resources for future generations. All organic material, whether of animal or plant origin, produces CO_2 emissions that are hazardous to the environment, for instance, when decomposing or being burned. Sustainability means minimizing CO_2 emissions and also protecting resources and making minimal use of finite raw materials.

Bio-based Products

Bio-based products are made from raw materials that have absorbed as much CO_2 during their short growth as they will release when they are disposed of and/or burned. The removal or replacement of fossil based products in a manufacturing process greatly reduces harmful effects to the environment. This is shown below as an example diagram.

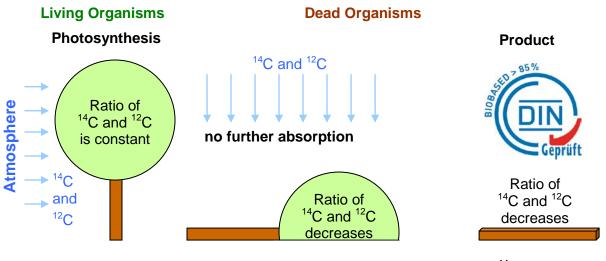
compostable

Bio-based materials or products are completely or partially composed of renewable resources. Additionally, bio-based products could be biodegradable. This depends on the chemical composition and on further additives that may have been used. The compostability of a product can be proven by certification under the relevant schemes offered by DIN CERTCO.

Examples of Product Groups

- Bio-based and biodegradable, e.g. polyesters formed by bacteria
- Bio-based and not biodegradable, e.g. polyethylene produced from bioethanol
- Of fossil origin and biodegradable, e.g. biodegradable plastics on mineral oil basis
- Of fossil origin and not biodegradable, e.g. polyethylene produced from fossil sources

Determination of Bio-based Content


Using the ¹⁴C-method, the age of an organic resource is determined, and it is thus designated as fossil or bio-based.

Organic Compounds

They consist of carbon, hydrogen and other atoms. All animal and vegetable-based materials, (also called biomass), contain organic compounds.

Isotopic Ratio

¹²C and radiocarbon (¹⁴C) are carbon isotopes: carbon atoms with various atomic masses. The ratio between ¹²C and ¹⁴C is the same in a living organism as it is in the atmosphere. Living biomass absorbs ¹²C and ¹⁴C isotopes during metabolism through food or photosynthesis. If the metabolism of an organism stops, no further radiocarbon is absorbed. The isotope ratio decreases with time, because the ¹⁴C isotope decays within a half-life of 5730 years. However, ¹²C is a stable carbon isotope and shows no decay.

¹⁴C analysis

¹⁴C-method

Using the ¹⁴C-method, the content of ¹⁴C isotopes in an organic material is determined. The method is a recognized and safe process that is specified in testing standards and has proven its usefulness, for instance, in archaeology for determining the age of bones.

The ¹⁴C-activity shows the bio-based carbon content of the product as a percentage.